Edge Functions

Running AI Models

How to run AI models in Edge Functions.


Supabase Edge Runtime has a built-in API for running AI models. You can use this API to generate embeddings, build conversational workflows, and do other AI related tasks in your Edge Functions.

Setup

There are no external dependencies or packages to install to enable the API.

You can create a new inference session by doing:


_10
const model = new Supabase.ai.Session('model-name')

Running a model inference

Once the session is instantiated, you can call it with inputs to perform inferences. Depending on the model you run, you may need to provide different options (discussed below).


_10
const output = await model.run(input, options)

How to generate text embeddings

Now let's see how to write an Edge Function using the Supabase.ai API to generate text embeddings. Currently, Supabase.ai API only supports the gte-small model.


_13
const model = new Supabase.ai.Session('gte-small')
_13
_13
Deno.serve(async (req: Request) => {
_13
const params = new URL(req.url).searchParams
_13
const input = params.get('input')
_13
const output = await model.run(input, { mean_pool: true, normalize: true })
_13
return new Response(JSON.stringify(output), {
_13
headers: {
_13
'Content-Type': 'application/json',
_13
Connection: 'keep-alive',
_13
},
_13
})
_13
})

Using Large Language Models (LLM)

Inference via larger models is supported via Ollama and Mozilla Llamafile. In the first iteration, you can use it with a self-managed Ollama or Llamafile server. We are progressively rolling out support for the hosted solution. To sign up for early access, fill up this form.

Running locally

Install Ollama and pull the Mistral model


_10
ollama pull mistral

Run the Ollama server locally


_10
ollama serve

Set a function secret called AI_INFERENCE_API_HOST to point to the Ollama server


_10
echo "AI_INFERENCE_API_HOST=http://host.docker.internal:11434" >> supabase/functions/.env

Create a new function with the following code


_10
supabase functions new ollama-test

supabase/functions/ollama-test/index.ts

_37
import 'jsr:@supabase/functions-js/edge-runtime.d.ts'
_37
const session = new Supabase.ai.Session('mistral')
_37
_37
Deno.serve(async (req: Request) => {
_37
const params = new URL(req.url).searchParams
_37
const prompt = params.get('prompt') ?? ''
_37
_37
// Get the output as a stream
_37
const output = await session.run(prompt, { stream: true })
_37
_37
const headers = new Headers({
_37
'Content-Type': 'text/event-stream',
_37
Connection: 'keep-alive',
_37
})
_37
_37
// Create a stream
_37
const stream = new ReadableStream({
_37
async start(controller) {
_37
const encoder = new TextEncoder()
_37
_37
try {
_37
for await (const chunk of output) {
_37
controller.enqueue(encoder.encode(chunk.response ?? ''))
_37
}
_37
} catch (err) {
_37
console.error('Stream error:', err)
_37
} finally {
_37
controller.close()
_37
}
_37
},
_37
})
_37
_37
// Return the stream to the user
_37
return new Response(stream, {
_37
headers,
_37
})
_37
})

Serve the function


_10
supabase functions serve --env-file supabase/functions/.env

Execute the function


_10
curl --get "http://localhost:54321/functions/v1/ollama-test" \
_10
--data-urlencode "prompt=write a short rap song about Supabase, the Postgres Developer platform, as sung by Nicki Minaj" \
_10
-H "Authorization: $ANON_KEY"

Deploying to production

Once the function is working locally, it's time to deploy to production.

Deploy an Ollama or Llamafile server and set a function secret called AI_INFERENCE_API_HOST to point to the deployed server


_10
supabase secrets set AI_INFERENCE_API_HOST=https://path-to-your-llm-server/

Deploy the Supabase function


_10
supabase functions deploy

Execute the function


_10
curl --get "https://project-ref.supabase.co/functions/v1/ollama-test" \
_10
--data-urlencode "prompt=write a short rap song about Supabase, the Postgres Developer platform, as sung by Nicki Minaj" \
_10
-H "Authorization: $ANON_KEY"

As demonstrated in the video above, running Ollama locally is typically slower than running it in on a server with dedicated GPUs. We are collaborating with the Ollama team to improve local performance.

In the future, a hosted LLM API, will be provided as part of the Supabase platform. Supabase will scale and manage the API and GPUs for you. To sign up for early access, fill up this form.